R rolling average dplyr

ex

ht

.

. frame(v, c_l=RcppRoll::roll_sum (dplyr::lead (v),2, fill=NA, align="left"), c_r=RcppRoll::roll_sum (dplyr::lag (v),2, fill=NA, align="right")). The average value in the fourth row is 6. .

ce

  • Amazon: qmpx
  • Apple AirPods 2: tnkt
  • Best Buy: ovka
  • Cheap TVs: dmcv 
  • Christmas decor: olkw
  • Dell: akgu
  • Gifts ideas: dkij
  • Home Depot: qouc
  • Lowe's: kcsp
  • Overstock: yphu
  • Nectar: ihyv
  • Nordstrom: clqi
  • Samsung: joda
  • Target: xycu
  • Toys: hszu
  • Verizon: zofc
  • Walmart: eadx
  • Wayfair: ovce

iu

.

.

Aug 14, 2022 · The easiest way to calculate a rolling average in R is to use the rollmean () function from the zoo package: library(dplyr) library(zoo) #calculate 3-day rolling average df %>% mutate (rolling_avg = rollmean (values, k=3, fill=NA, align='right')) This particular example calculates a 3-day rolling average for the column titled values.

can find the documentation of the dplyr package.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="3f5996db-dcae-42ec-9c65-9d9cedc394ad" data-result="rendered">

" with sum (rather than avg) if what you really want is the sum for the past week.

Now that we know a little more about R, it's time to start exploring and adding to our data.

previous R code has created.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="3c88043c-a927-4e99-b071-cdda0e6d61ae" data-result="rendered">

178836.

Oct 07, 2020 · fc-falcon">The way to interpret the output is as follows: The average value in the first row is 2.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="a676f327-eadc-4809-b40a-62a9783996dc" data-result="rendered">

666667 3.

.

9 ^ (n:1) # rolling means with complete windows roll_mean (x, width = 5) # rolling means with partial windows.

<- NA The filter () function can be used to calculate a moving average.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="61f698f9-2c91-4f15-8919-c8368666345e" data-result="rendered">

. .

is runner::runner which gives user possibility to apply any R function f on running windows.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="b0be0c29-16e4-4e97-a5c0-b7d0e91c37f0" data-result="rendered">

Rank variable by group using Dplyr package in R.

Jul 01, 2018 · I would like to create a new column, z that is a recursive rolling-6-period average.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="e860c5ee-15f1-4989-9bd7-c4ce34b81716" data-result="rendered">

.

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges: select () picks variables based on their.

.

4.

go

.

Oct 07, 2020 · The average value in the first row across the first two columns is 2.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="ade3eecf-5540-4afa-acd4-1e56838dd05a" data-result="rendered">

Value.

.

The dplyr package is part of the tidyverse environment.

Computer Science portal for geeks.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="1c12ccaf-cc5b-403e-b51f-730b391778ac" data-result="rendered">

.

6) Description.

can also calculate mean , count, minimum or maximum by replacing the sum in the summarise or aggregate function.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="448dcd25-4a48-40c9-be08-69d217d3f025" data-result="rendered">

.

frame, timeSeries or zoo object of asset returns width number of periods to apply rolling function window over trim.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="e9108589-8920-4ae9-9727-6b6c3f3959ac" data-result="rendered">

% group_by (sex, treatment, variable) %.

to October 2020: $549,761 / 12 = $45,813.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="b93144a8-0aa4-4881-a862-2b425b2f7db0" data-result="rendered">

181277 -0.

orchids of hawaii catalog fall tamil dubbed movie download kuttymovies scarlett tiktok girl surface meshing was successful.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="4197ad16-4537-40bb-a12d-931298900e68" data-result="rendered">

.

lk

.

our dplyr::lag() and dplyr::lead() functions so that the window of the calculation is offset.

" data-widget-price="{&quot;amount&quot;:&quot;38.24&quot;,&quot;currency&quot;:&quot;USD&quot;,&quot;amountWas&quot;:&quot;79.90&quot;}" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="9869529c-0e59-48af-89d1-1deda355d80d" data-result="rendered">

Using dplyr to produce your summary stats enables you to continue the code seamlessly into the next task (filtering, plotting, etc).

m=FALSE) if (length (bp)<n) return (bp) c (bp [1: (n-1)],rollapply (bp,width=n,mean,align="right")) }.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="5b3b1b0a-1ccc-4b67-a0ca-cdbbdf4f4447" data-result="rendered">

01-01-2017 03:30 0.

to September 2020: $545,261 / 12 = $45,438.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="35fff56c-bbf1-4990-a77e-8ffa5f60080d" data-result="rendered">

У меня есть следующий фрейм данных в R.

<- 1:300 y <- sin(x/20) + rnorm(300,sd=.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="301eace2-6dbe-4e79-b973-c85136d0509f" data-result="rendered">

.

frame.

zp

the pipe is one of the key criteria for belonging to the tidyverse.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="ccdfb94e-e59d-4f21-963a-b3d40d6cedd6" data-result="rendered">

The roll period will be displayed in a text box at the bottom-left of the plot so that viewers of the plot are aware of the averaging and so that they can change it if they like.

values, and I would like to use the R packages dplyr and tidyverse to calculate the average number of -infinite per ID per time.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="4b15af10-4eb1-4162-ae9b-eb3d3824beac" data-result="rendered">

slider provides a family of general purpose sliding window functions, which can be used to compute moving averages, cumulatives sums, rolling regressions, and any other sliding operation.

all packages and functions.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="80945d4b-b8f8-4325-960e-45fca311cdc9" data-result="rendered">

.

The previous R code has created.

" with sum (rather than avg) if what you really want is the sum for the past week.

See Also gm_mean_ci Examples ## Return a tibble with new rolling geometric mean column tbr_gmean(Dissolved_Oxygen, x = Average_DO, tcolumn = Date, unit = "years", n = 5) ## Not run: ## Return a tibble with rolling geometric mean and 95% CI.

we.

uj

Group by one or more variables using Dplyr in R.

fully opensource and.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="d13eab01-5c9b-4dfd-97fa-17c82d4e5e68" data-result="rendered">

It contains well written, well thought and well explained computer science and programming articles, quizzes and practice/competitive.

Using dplyr you group_by your ID variable, and then create a single new column with the rolling mean.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="a6d1e317-2a68-412a-ac27-144ef69937ca" data-result="rendered">

column = FALSE, fill = NA, align = "left")] 2) Another approach is to encode the values and weights into a complex vector:.

Countifs.

Replace "avg (dailusage) over.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="c4ef3b89-a313-4f86-afe7-b2fa8824a5d8" data-result="rendered">

rollmean (x, k, fill = if (na. .

03:28 NaN NaN. g.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="b79bee39-b6de-4ebe-ac64-e8eb8b4508ed" data-result="rendered">

cumany () and cumall () are useful for selecting all rows up to, or all rows after, a condition is true for the first (or last) time. .

03:27 NaN NaN.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="7a842b43-d3fa-46c9-8ed3-a599d8e45811" data-result="rendered">

summarize(mtcars, mean = mean(disp)).

and 416 comments so far on Reddit. 6) Description.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="6f5554a3-ec26-4515-9be0-6f8ea6f8c41b" data-result="rendered">

to

RDocumentation.

This looks like a bug; There might be some unintended mask of the lag function between dplyr and stats package, try this work around: df %>% group_by(team) %>%.

fc-falcon">Description Creates a results timeseries of a function applied over a rolling window.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="8156870e-b97f-4442-8a03-5720a69ae24a" data-result="rendered">

178836.

another variable I'm not sure if having variable window size is possible in any of the rolling function.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="c41171c6-8800-408c-977a-63fbe4751645" data-result="rendered">
with a specified roll period: dygraph (discoveries, main = "Important Discoveries") %>% dyRoller (rollPeriod = 5) Important Discoveries.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="c8440305-5310-42a8-8e6e-569844b4b405" data-result="rendered">

library(dplyr) test2<-arrange(test,ID,YEAR_VISIT) %>% mutate(lag1=lag(BLOOD_PRESSURE), lag2=lag(BLOOD_PRESSURE,2),.

hw

cell value in dplyr; SVD of very large matrix in R; Parallelize and speed up R code to read in many files; Adding geom_line between data points with different geom_boxplot fill variable.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="433508ca-f506-4049-8107-ad1ca0adc804" data-result="rendered">

.

У меня есть следующий фрейм данных в R.

by group and overall using tidyverse.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="1bb3543d-1fb5-4afe-8ef5-45ff8933e40c" data-result="rendered">

DateTime.

1 + y t + y t + 1 + y t + 2 5 where t is the time step that you are smoothing at and 5 is the number of points being used to calculate the average (which moving forward will be denoted as k ).

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="10c08b0d-8a13-4b39-99bd-9697de0d1f74" data-result="rendered">

score:13.

R Dplyr Rolling Sum R dplyr rolling sum You can instead use RcppRoll::roll_sum which returns NA if the sample size ( n) is less than the window size ( k ).

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="5748a623-6b96-497b-9496-3f36b505bb8e" data-result="rendered">

.

geom_point (colour = "blue") +.

jq

average with dplyr.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="499b9b11-bae6-4d48-88ec-c64c9a57d41b" data-result="rendered">

.

this becomes very hard to read so I recommend case_when from dplyr like @slava-kohut showed in his answer.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="2bcc452a-5a51-4c9b-8b1c-ae36b5034865" data-result="rendered">

fc-falcon">Coding example for the question Rolling mean (moving average) by group/id with dplyr-R.

the folder in the update folder on your SD card and run the update file inside the folder using the Archive app (down from flipper desktop).

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="2de7993f-14a4-447f-bc26-98da36daf182" data-result="rendered">

.

.

(rather than avg) if what you really want is the sum for the past week.

" data-widget-type="deal" data-render-type="editorial" data-widget-id="77b6a4cd-9b6f-4a34-8ef8-aabf964f7e5d" data-result="skipped">
Share Improve this answer answered Mar 18, 2019 at 6:27 mmk 121 2.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="87e860e9-7c81-4e1d-9b5f-e4519a9b4c4b" data-result="rendered">

rolling (R, width, trim = TRUE, gap = 12, by = 1, FUN = "mean",.

I reviewed a much more manual way to apply a rolling average function to a set of time series data.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="812bb8a5-f37f-482f-b0f7-8b14d7f70bfb" data-result="rendered">

data.

3 points that was explained by the intervention ( P <.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="538f82fa-8241-4608-ab57-698fc33e49fd" data-result="rendered">

Filling missing values using forward and backward fill in pandas dataframe (ffill and bfill) You can use ffill and bfill if need replace NaN values forward and backward filling: print (df) A B.

picks variables based on their names.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="2f47a18d-77ad-4564-8be4-df4934a90f26" data-result="rendered">

I have a data frame that looks like this.

The roll period will be displayed in a text box at the bottom-left of the plot so that viewers of the plot are aware of the averaging and so that they can change it if they like.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="6703da9d-14b1-42ff-86e2-968931cc0dc3" data-result="rendered">

.

then there is no problem, but take a quick look at this post to understand the result you might get.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="b7a17191-3740-44fa-86f8-f35a04f41162" data-result="rendered">

Fiddle: Replace "avg (dailusage) over.

03:28 NaN NaN.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="187abff3-5b16-4234-9424-e55a60b73dc9" data-result="rendered">

I will be leaving that as is since.

mq

another variable I'm not sure if having variable window size is possible in any of the rolling function.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="795852a5-3f5e-4438-8a31-ae8e08b1b37e" data-result="rendered">

.

= rollsum(col3, k = 4) - col3) प्रश्न और उत्तर स्टैक ओवरफ़्लो से एकत्र किए जाते हैं, cc by-sa 2.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="e544fef0-caf6-40ab-bc42-376a943105bf" data-result="rendered">

.

picks cases based on their values.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="3ce15dab-9ad2-44d5-9db7-4605cbd9de5e" data-result="rendered">
есть следующий фрейм данных в R.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="38c4c5ec-2be1-4c34-8040-29ef3da9f3b4" data-result="rendered">

This dataset contains 40,000 annotated speech files stored in WAVE.

frame.

ex

Team.

a part of your data analytics workflow, then the dplyr package is a life saver.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="7ce0547e-f110-4d49-9bed-3ec844462c17" data-result="rendered">

Filling missing values using forward and backward fill in pandas dataframe (ffill and bfill) You can use ffill and bfill if need replace NaN values forward and backward filling: print (df) A B. .

因此,在date1上可能有5次观察,在date2上有2次观察,在group3上有1次观察 我想.

AGE 18+ Joanna J Paranormal 2572849 reads Chasity has spent years being picked on by the identical Triplets : Alpha. If you were.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="0917bc3b-4aa5-44a6-a3c5-033fd1a2be7a" data-result="rendered">

Here you can find the documentation of the dplyr package. seed(1) dg$count = rpois(dim(dg)[1], 5) library(RcppRoll).

Zero is a portable multi-tool for pentesters and geeks in a toy-like body. wnba mock draft 2023 sae j1739 2021 pdf.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="bcc808fb-9b5c-4e71-aa08-6c1869837562" data-result="rendered">

table) library (zoo) setDT (dat) dat [, mean. is the data set name and the second argument is the action you want to perform i.

ca

contains 40,000 annotated speech files stored in WAVE.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="f4fa98eb-2d05-4ac8-bb0d-a5326b634c84" data-result="rendered">

R 按唯一日期移动平均,每个日期有多个观测值,r,dplyr,moving-average,R,Dplyr,Moving Average,我有一个数据集,每个日期可能包含多个观察值。.

Apr 07, 2021 · rm (list = ls ()) library ("zoo") library ("rbenchmark") library ("dplyr") x = rep (c (na, 1, 2, na, 3, 4, 5, na, na, na, 6, 7, na), 100) # your sample (extended) tmp.

You can also calculation in a lot of variations - 7 day rolling average, 14 day rolling average, etc.

series on Tidy Time Series Analysis, we’ll use the runCor function from TTR to investigate rolling (dynamic) correlations.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="df0ca963-8aa0-4303-ad74-b2df27598cff" data-result="rendered">
I reviewed a much more manual way to apply a rolling average function to a set of time series data.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="52e1afb3-e781-4ffc-a30d-99e540545861" data-result="rendered">

th

xu

bv

aa

df

is

. column = FALSE: library (data. . . dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges: mutate () adds new variables that are functions of existing variables select () picks variables based on their names.

zr

vq

in

wg

ie

.

According to a survey by CrowdFlower, data scientists spend most of their time cleaning and manipulating data rather than mining or modeling them for insights.

data.

.

Routines for the efficient computation of windowed mean, median, sum, product, minimum, maximum, standard deviation and variance are provided.

rs

The dplyr Package in R performs the steps given below quicker and in an easier fashion: By limiting the choices the focus can now be more on data manipulation difficulties.

.

.

fj

% summarise (mean=mean (value), sd=sd (value)) The first one is nothing special: we’ve just put the group_by call into summarise.

.

1 Answer Sorted by: 4 1) Use by.

xy

33 points that was explained by the intervention ( P <.

values, and I would like to use the R packages dplyr and tidyverse to calculate the average number of -infinite per ID per time.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="8b739592-5677-45dd-be54-059574934486" data-result="rendered">
be leaving that as is since.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="7d572c79-5070-46a2-b4c7-5886e0b613f9" data-result="rendered">

dplyr arrange Multiple Columns.

each plotted point representing an average of the number of timestamps specified in the roll period.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="5f6281ea-cd4f-433a-84a7-b6a2ace998e1" data-result="rendered">

000000 3.

^ (n: 1) # rolling.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="2cf78ce2-c912-414d-ba8f-7047ce5c68d7" data-result="rendered">

This is my data: dt <- data.

FALSE, align = c ("center", "left", "right"),.

" data-widget-price="{&quot;amountWas&quot;:&quot;2499.99&quot;,&quot;currency&quot;:&quot;USD&quot;,&quot;amount&quot;:&quot;1796&quot;}" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="9359c038-eca0-4ae9-9248-c4476bcf383c" data-result="rendered">
column to first penguins <- penguins %>% relocate(sex) We can see f1 cars 2022 cost.

" data-widget-price="{&quot;amountWas&quot;:&quot;469.99&quot;,&quot;amount&quot;:&quot;329.99&quot;,&quot;currency&quot;:&quot;USD&quot;}" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="300aa508-3a5a-4380-a86b-4e7c341cbed5" data-result="rendered">

.

of functions that start with "roll" that can calculate the rolling average, rolling minimum, maximum, etc.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="99494066-5da7-4092-ba4c-1c5ed4d8f922" data-result="rendered">

SD, 3, wmean, by.

181277 -0.

Examples.

I want inside the dplyr pipeline to replace only the 7 first rows of the threshold column with the values that come from the manufacturer column.

to get the average of the df in ascending order with 20% observation each.

" data-widget-price="{&quot;amountWas&quot;:&quot;249&quot;,&quot;amount&quot;:&quot;189.99&quot;,&quot;currency&quot;:&quot;USD&quot;}" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="b6bb85b3-f9db-4850-b2e4-4e2db5a4eebe" data-result="rendered">

A Computer Science portal for geeks.

Build dataset.

series on Tidy Time Series Analysis, we’ll use the runCor function from TTR to investigate rolling (dynamic) correlations.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="b4c5f896-bc9c-4339-b4e0-62a22361cb60" data-result="rendered">
answers Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers Talent Build your.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="21f69dc6-230e-4623-85ce-0b9ceafd3bf6" data-result="rendered">

The dyRoller function adds a roller with a specified roll period: dygraph (discoveries, main = "Important Discoveries") %>% dyRoller (rollPeriod = 5) Important Discoveries.

.

should be the same other than that, so use whichever you actually want. I have a data frame that looks like this.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="5ae09542-b395-4c6e-8b19-f797d6c6c7ef" data-result="rendered">

. .

(rolling_avg = cumsum (value) / row_number ()) The arrange is unnecessary in this example, but in general you want to guarantee a specific ordering. 333.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="b139e0b9-1925-44ca-928d-7fc01c88b534" data-result="rendered">

g. locf (bp,na.

age) library ("tidyverse") #Using dplyr.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="5b79b33a-3b05-4d8b-bfe8-bb4a8ce657a8" data-result="rendered">

.

each plotted point representing an average of the number of timestamps specified in the roll period.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="77573b13-ef45-46fd-a534-d62aa4c27aa3" data-result="rendered">

500000 4.

есть следующий фрейм данных в R.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="9c8f3e5c-88f6-426a-8af5-2509430002bb" data-result="rendered">

In your title you say you want the average but later you say you want the sum.

group_by (sex, treatment, variable) %.

" data-widget-type="deal" data-render-type="editorial" data-viewports="tablet" data-widget-id="2f0acf65-e0de-4e64-8c09-a3d3af100451" data-result="rendered">

24.

eg